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Preamble
This guide serves as a general review of some of the topics for the first exam for the

course Digital Signal Processing. Note that there may be typos so use it at your own

risk. If you spot a mistake, please let me know so that I can edit it.

1 LSS Review

Linear, Time-Invariant (LTI) Systems
LTI systems are “special” in a way, as the output of an LTI system is somewhat trivial

as long as we know the impulse response, generally referred to as h(t). Consider the

following block diagram:

If we are given that this system is LTI, it follows the convolution property that

y(t) = x(t) ⇤ h(t) in continuous-time and y[n] = x[n] ⇤ h[n] in discrete-time. For LTI

systems, we can take the respective CTFT or DTFT of the input signal to look in

the frequency domain that tells us a bit more. Here are a bunch of random facts

about LTI systems that I think you might find useful:

• LTI systems cannot create/add new frequencies to input signals.

1

 



– If X(j⌦) = 0 for some ⌦, then this tells us that Y (j⌦) = 0. That is, if the

frequency is not present in the input, then it is not present in the output

either.

• LTI systems however can either scale up or scale down the frequencies that are

present in an input signal.

– This follows from the multiplicative property in the frequency domain,

(i.e. Y (j⌦) = X(j⌦) · H(j⌦)). If H(j⌦) was a low-pass filter, we can

scale down the frequencies from the input. Note that this is also saying

that LTI systems can kill frequencies.

• LTI systems can change the phase of the input frequencies.

– This is simply saying \Y (j⌦) = \X(j⌦) + \H(j⌦).

• Complex exponentials (or sinusoids) are eigenfunctions of LTI systems.

– This is saying that if our input to an LTI system was a complex exponen-

tial, then the output would simply be a scaled and (phase) shifted signal

according to the frequency reponse, H(j⌦):

y[n] = |H(ej!0)| · ej(!0n+\H(ej!0 ))
, (1)

where !0 is the input frequency.

DTFT & DTFT Properties
The DTFT and its synthesis are given by the equations

X(ej!) =
1X

n=1
x[n]e�j!n

(2)

x[n] =
1

2⇡

Z
⇡

�⇡

X(ej!)ej!nd!. (3)

With this, we also have the following important properties:

• Time Reversal:

x[n]
DTFT ��! X(ej!) (4)

x[�n] DTFT ��! X(e�j!) (5)

2



• Time Shifting:

x[n]
DTFT ��! X(ej!) (6)

x[n� n0]
DTFT ��! e

�j!n0 ·X(ej!) (7)

• Frequency Shifting (Modulation) Property:

x[n]
DTFT ��! X(ej!) (8)

e
j!0n · x[n] DTFT ��! X(ej(!�!0)) (9)

• Differentiation in Frequency Property:

x[n]
DTFT ��! X(ej!) (10)

n · x[n] DTFT ��! j
d

d!
X(ej!) (11)

(12)

• Multiplication Property:

x[n]
DTFT ��! X(ej!) (13)

h[n]
DTFT ��! H(ej!) (14)

x[n] · h[n] DTFT ��! 1

2⇡

Z
⇡

�⇡

X(ej!)H(ej(!�✓)) (15)

Note that equation (12) indicates that the multiplication of two signals in the

time domain is the periodic convolution of the two signals in the frequency

domain.

• Convolution Property:

x[n]
DTFT ��! X(ej!) (16)

h[n]
DTFT ��! H(ej!) (17)

x[n] ⇤ h[n] DTFT ��! X(ej!) ·H(ej!) (18)

• Parseval’s Theorem:

x[n]
DTFT ��! X(ej!) (19)

1X

n=�1
|x[n]|2 = 1

2⇡

Z
⇡

�⇡

|X(ej!)|2d! (20)
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Miscellaneous
Here are also some facts that I think you might find useful:

• Even & Odd Signals. If a signal, say x(t) is even, then x(t) = x(�t). If the

signal is odd, then x(�t) = �x(t).

• Sifting Properties of Impulses. The “sifting property of impulses” says that

integrating a signal multiplied by an impulse returns the value of the function

at the location of the impulse:

Z
b

a

x(t)�(t� c)dt = x(c). (21)

Note that this equation implicitly assumes that a  c  b.

• Geometric Series Formula. The geometric series formula tells us

nX

i=0

ar
n =

a

1� r
, (22)

where |r| < 1.

• Complex Exponentials. Taking the DTFT or CTFT of a complex exponen-

tial yields an impulse:

e
j!0n DTFT ��! 2⇡�(! � !0) (23)

e
j⌦0t CTFT ��! 2⇡�(⌦� ⌦0) (24)

• Sinc Function. The sinc function in the frequency domain is a “box function”

with cutoff frequency determined by the sinc. For example the signal

x(t) =
3 sin(1000⇡t)

⇡t
(25)

yields an X(j⌦) that is a box with gain 3 and cutoff frequency of |⌦|  1000⇡.

• Periodicity of DTFT Frequencies. The name suggests it all. We generally

consider the fundamental DT frequencies, that is the frequencies within the

range ! 2 [�⇡, ⇡]. Note that this implies that ! = 0, ⇡ are the smallest and

largest frequencies in DT terms, respectively.
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2 Sampling & Aliasing

Sampling
For sampling, we largely deal with the impulse sampled signal, where if our input

signal was x(t) then the CTFT of the impulse sampled signal, xp(t) is

xp(t) = x(t) · p(t) (26)

Xp(j⌦) =
1

2⇡
X(j⌦) ⇤ P (j⌦) (27)

Xp(j⌦) =
1

2⇡
X(j⌦) ⇤ 2⇡

T

1X

n=�1
�(⌦� n⌦T ) (28)

Xp(j⌦) =
1

T

1X

n=�1
X(j⌦) ⇤ �(⌦� n⌦T ) (29)

Xp(j⌦) =
1

T

1X

n=�1
X(j(⌦� n⌦T )). (30)

Don’t forget the scaling of the 1/T !!! You should also know that the ideal recon-

struction filter takes the mathematical form

Hr(j⌦) =

(
T, |⌦|  ⇡/T

0, otherwise.
(31)

Aliasing
Note that if we didn’t have aliasing, then the input signal x(t) is equal to the output

y(t), the reconstructed signal. That is, our Nyquist criteria was satisfied:

⌦s � 2 · ⌦max, (32)

where ⌦s is our sampling frequency and ⌦max is the bandwidth of our input signal.

Now what if the Nyquist criteria wasn’t satisfied? We pretty much have two options:

(1) use an anti-aliasing filter to avoid aliasing (in this case, our output would be

equivalent to the filtered signal) or (2) use the frequency folding chart and/or plot

and find the aliased signal.
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The General Procedure
Consider the following block diagram of a digital signal processing system:

The general procedure is the following:

1. Detect if there is aliasing. Some questions might ask you to straight away

to determine the output (reconstructed signal) of the system. If there is no

aliasing, the reconstructed signal is equal to the input.

2. Plot X(j⌦) to find the plot of the CTFT of the impulse sampled signal, Xp(j⌦).
You’ll find that doing this will make your life easier. Add any overlaps that

occur as a result of aliasing.

3. Find the output of the system by going through an ideal reconstruction filter,

unless otherwise stated.

3 Quantization
Some notes on quantization:
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• ADCs can only detect values between some maximum nmax and some minimum

nmin. Thus, if you had a signal g[n] where

g[n] > nmax (33)

g[n] < nmin, (34)

then the ADC goes in saturation, which results in clipping.

• We compute the dynamic range of an ADC by

R = nmax � nmin. (35)

• An ADC is specified by a certain number of bits, say B. It can only store (or

generate) 2B unique values.

• However, note that the signal g[n] can take infinite values, but an ADC can

only have N = 2B values. As a result, we need to map some values to the same

value. This is quantization.

• More formally, quantization is how an ADC can connect all possible values

between some nmax and nmin to 2B unique numbers, where B is generally pre-

specified.

• Uniform quantization is equally dividing our range into 2B pieces and then

assigning our discrete signal to the middle of that piece.

– In order to divide our range evenly (or uniformly), we can divide the range

by N = 2B to get our quantization interval:

� =
Range

2B
(36)

• So how do we actually do the mapping? We have to consider the maximum

quantization error:

Maximum Quantization Error = �/2 (37)

This maximum quantization error intuitively makes sense because in uniform

quantization, we’re assigning our signal to the middle of the interval. To do

the mapping, you should take the quantization value with ±�/2 and map it to

the corresponding “middle” value.

The following page has some practice problems.
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Practice Problems
Problem 1 (LTI Systems). Consider a discrete-time LTI system, whose impulse

response is given as

h[n] =

8
><

>:

�1, n = 0,

1, n = 4,

0, otherwise.

(38)

(a) Let H(ej!) denote the frequency response of the LTI system. Determine

|H(ej
⇡
4 )| and \H(ej

⇡
4 ).

(b) Consider a discrete-time signal x[n] = {1, 0, 3, 5} that is the input to this

system.

• Compute y[n], the output of this system, by using only the convolution

property of the DTFT.

• Now suppose that the output of another input signal, say ỹ[n], has the

following relationship with y[n]:

Ỹ (ej!) = Y (ej!)e�j3!
. (39)

What is this new input signal, x̃[n]?
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Problem 2 (Sampling). Justify all of your answers.

(a) Consider a continuous-time signal g(t) = �(t � 5). Can we use the Nyquist

sampling theorem to sample this signal?

(b) Consider a continous-time signal x(t) = cos(2000⇡t + ⇡/3) that is sampled

using a frequency of 6000⇡ radians/second. Provide a closed-form expression

for the discrete-time signal x[n] = x(nT ).
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Problem 2
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Problem 3 (2017, Exam 1). Consider the continuous-time signal g(t) = 4+3 cos(100⇡t�
⇡/4) + 4 sin(200⇡t). This signal is sampled with a sampling frequency of fs = 25 Hz

to obtain g[n].

(a) Provide an expression for the sampled signal g[n].

(b) Suppose g[n] is reconstructed into a signal ĝa(t) using sinc interpolation. Pro-

vide an expression for this signal and justify the reasoning behind your answer.
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Problem 3
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4. Consider the block diagram of a DSP system shown below in Fig. 3.

Figure 3: Block diagram of a DSP system.

Further, consider a continuous-time signal x(t) whose continuous-time Fourier transform (CTFT) is in Fig. 4.

Figure 4: Plot of the CTFT of a continuous-time signal x(t).

The signal ga(t) being input to the DSP system in Fig. 3 is defined as

ga(t) = x(t) cos(2000⇡t) cos(3000⇡t).

Further, define T1 = 1
6000 seconds and T2 = 1

8000 seconds. Finally, suppose the anti-aliasing filter in Fig. 3 has
the following frequency response:

Haa(j⌦) =

(
e
�j10⌦

, |⌦|  6000⇡,

0, otherwise.

(a) (8 points) Provide a labeled plot of the CTFT of ga(t).

(b) (5 points) Provide a closed-form expression for gaa(t) as a function of x(t). Justify your answer.

(c) (6 points) Provide a labeled plot of the DTFT of the discrete-time signal g[n] = gaa(nT1).

(d) (6 points) Provide a closed-form expression for the reconstructed signal ĝa(t) as a function of x(t). Justify
your answer.
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