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Preamble

This guide serves as a general review of some of the topics for the first exam for the
course Digital Signal Processing. Note that there may be typos so use it at your own
risk. If you spot a mistake, please let me know so that I can edit it.

1 LSS Review

Linear, Time-Invariant (LTT) Systems

LTT systems are “special” in a way, as the output of an LTI system is somewhat trivial
as long as we know the impulse response, generally referred to as h(t). Consider the

following block diagram:
z[n] ‘-{ H(e'™) }—» y[n]

If we are given that this system is LTI, it follows the convolution property that
y(t) = x(t) * h(t) in continuous-time and y[n] = x[n] * h[n| in discrete-time. For LTI
systems, we can take the respective CTFT or DTFT of the input signal to look in
the frequency domain that tells us a bit more. Here are a bunch of random facts
about LTT systems that I think you might find useful:

e LTI systems cannot create/add new frequencies to input signals.



— If X(j2) = 0 for some €2, then this tells us that Y'(j2) = 0. That is, if the
frequency is not present in the input, then it is not present in the output
either.

e LTT systems however can either scale up or scale down the frequencies that are
present in an input signal.

— This follows from the multiplicative property in the frequency domain,
(le. Y(jQ) = X(JQ) - H(j2)). If H(j2) was a low-pass filter, we can
scale down the frequencies from the input. Note that this is also saying
that LTI systems can kill frequencies.

e LTI systems can change the phase of the input frequencies.
— This is simply saying £Y (jQ) = ZX(5Q) + LH(jQ).
e Complex exponentials (or sinusoids) are eigenfunctions of LTI systems.

— This is saying that if our input to an LTT system was a complex exponen-
tial, then the output would simply be a scaled and (phase) shifted signal
according to the frequency reponse, H(j<):

yln] = |H(e7*0)| - e omtHe0)

, (1)

where wy is the input frequency.

DTFT & DTFT Properties
The DTFT and its synthesis are given by the equations

X () = Z x[n]eden (2)
x[n] = % _ﬂ X ()" dw. (3)

With this, we also have the following important properties:

e Time Reversal:



Time Shifting:

zln] < X (&) (6)
z[n — ng] £ emiwno L x (e1) (7)

Frequency Shifting (Modulation) Property:

zfn] &85 X (&) (8)
eFwon . gln] L X (e7@wo)) (9)

Differentiation in Frequency Property:

z[n] &5 X (e7) (10)
n - x[n] <5 '%X(em (11)
(12)
Multiplication Property:
[n] &5 X(ej“) (13)
hn] &5 H (14)
2[n] - hln] L5 1 / X (&) H (e/“0) (15)

Note that equation (12) indicates that the multiplication of two signals in the
time domain is the periodic convolution of the two signals in the frequency
domain.

Convolution Property:

[n] < X (&) (16)
hln] <= H(e™) (17)
z[n] * h[n] €= X (&%) - H(e™) (18)
Parseval’s Theorem:
[n] 55 X () (19)
> fellf = 5 [ X ()P 20

n=—oo



Miscellaneous

Here are also some facts that I think you might find useful:

Even & Odd Signals. If a signal, say x(¢) is even, then z(t) = z(—t). If the
signal is odd, then z(—t) = —z(t).

Sifting Properties of Impulses. The “sifting property of impulses” says that
integrating a signal multiplied by an impulse returns the value of the function
at the location of the impulse:

b
/ z(t)o(t — ¢)dt = x(c). (21)

Note that this equation implicitly assumes that a < ¢ <b.

Geometric Series Formula. The geometric series formula tells us

- a
"= 22
St @)

where |r| < 1.

Complex Exponentials. Taking the DTFT or CTFT of a complex exponen-
tial yields an impulse:

DTFT

70 s 2 (w — wp) (23)
et E 9075( — Q) (24)

Sinc Function. The sinc function in the frequency domain is a “box function”
with cutoff frequency determined by the sinc. For example the signal

- 3 sin(lOOOwt)
a 7t

x(t)

yields an X (j€2) that is a box with gain 3 and cutoff frequency of |©2] < 10007.

(25)

Periodicity of DTFT Frequencies. The name suggests it all. We generally
consider the fundamental DT frequencies, that is the frequencies within the
range w € [—m,7]. Note that this implies that w = 0,7 are the smallest and
largest frequencies in DT terms, respectively.



2 Sampling & Aliasing

Sampling

For sampling, we largely deal with the impulse sampled signal, where if our input
signal was x(t) then the CTFT of the impulse sampled signal, x,(t) is

(1) = 2(t) - (1) (26)
X,(j9) = 5-X (D) * P9) (27)
X,(1Q) = %X (792) * — i d(Q2 — nQy) (28)
X,(59) % D X(jQ) *5(Q — nr) (29)
X,(9) = 72 3 X((Q -~ n)). (30)

Don’t forget the scaling of the 1/7!!! You should also know that the ideal recon-
struction filter takes the mathematical form

T, |Q| < /T

. (31)
0, otherwise.

Aliasing

Note that if we didn’t have aliasing, then the input signal x(t) is equal to the output
y(t), the reconstructed signal. That is, our Nyquist criteria was satisfied:

Qs Z 2 : Qma)u (32>

where {5 is our sampling frequency and €2, is the bandwidth of our input signal.
Now what if the Nyquist criteria wasn’t satisfied? We pretty much have two options:
(1) use an anti-aliasing filter to avoid aliasing (in this case, our output would be
equivalent to the filtered signal) or (2) use the frequency folding chart and/or plot
and find the aliased signal.
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The General Procedure

Consider the following block diagram of a digital signal processing system:

z(t) —| <D { bpic — y(t)
1 1
T1 T2

The general procedure is the following:

1. Detect if there is aliasing. Some questions might ask you to straight away
to determine the output (reconstructed signal) of the system. If there is no
aliasing, the reconstructed signal is equal to the input.

2. Plot X (j9) to find the plot of the CTFT of the impulse sampled signal, X, (j2).
You'll find that doing this will make your life easier. Add any overlaps that
occur as a result of aliasing.

3. Find the output of the system by going through an ideal reconstruction filter,
unless otherwise stated.

3 Quantization

Some notes on quantization:



e ADCs can only detect values between some maximum n,,,, and some minimum
Nmin- Thus, if you had a signal g[n| where

gln] > Npax (33)
gln] < nmin, (34)

then the ADC goes in saturation, which results in clipping.
e We compute the dynamic range of an ADC by
R = Nmax — MNmin- (35)

e An ADC is specified by a certain number of bits, say B. It can only store (or
generate) 25 unique values.

e However, note that the signal g[n| can take infinite values, but an ADC can
only have N = 25 values. As a result, we need to map some values to the same
value. This is quantization.

e More formally, quantization is how an ADC can connect all possible values
between some nNyax and nyi, to 22 unique numbers, where B is generally pre-
specified.

e Uniform quantization is equally dividing our range into 22 pieces and then
assigning our discrete signal to the middle of that piece.

— In order to divide our range evenly (or uniformly), we can divide the range
by N = 28 to get our quantization interval:

_ Range

J %

(36)

e So how do we actually do the mapping? We have to consider the maximum
quantization error:

Maximum Quantization Error = §/2 (37)

This maximum quantization error intuitively makes sense because in uniform
quantization, we’re assigning our signal to the middle of the interval. To do
the mapping, you should take the quantization value with +¢6/2 and map it to
the corresponding “middle” value.

The following page has some practice problems.
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Practice Problems

Problem 1 (LTI Systems). Consider a discrete-time LTI system, whose impulse
response is given as

-1, n=0,
hin] =< 1, n =4, (38)
0, otherwise.

(a) Let H(e’*) denote the frequency response of the LTI system. Determine
|H(e’%)| and ZH(e’%).

(b) Consider a discrete-time signal z[n| = {1,0,3,5} that is the input to this
system.

e Compute y[n|, the output of this system, by using only the convolution
property of the DTFT.

e Now suppose that the output of another input signal, say g[n|, has the
following relationship with y[n]:

Y (e) =Y (e%)e 9%, (39)

What is this new input signal, z[n|?
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Problem 2 (Sampling). Justify all of your answers.

(a) Consider a continuous-time signal ¢g(t) = (¢t — 5). Can we use the Nyquist
sampling theorem to sample this signal?

(b) Consider a continous-time signal x(t) = cos(20007t + 7/3) that is sampled
using a frequency of 60007 radians/second. Provide a closed-form expression
for the discrete-time signal z[n| = x(nT).
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Problem 3 (2017, Exam 1). Consider the continuous-time signal g(t) = 443 cos(1007t—
7/4) 4+ 4sin(2007t). This signal is sampled with a sampling frequency of f; = 25 Hz
to obtain g[n].

(a) Provide an expression for the sampled signal g[n].

(b) Suppose g[n] is reconstructed into a signal g,(t) using sinc interpolation. Pro-
vide an expression for this signal and justify the reasoning behind your answer.
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Consider the block diagram of a DSP system shown below in Fig. 3.

9a(t) 9aa(®) gln] 9a(®
—> > —>

c/D > D/C
Tn T

Figure 3: Block diagram of a DSP system.

Antialiasing
Filter

Further, consider a continuous-time signal z(¢) whose continuous-time Fourier transform (CTFT) is in Fig. 4.

A
v

-1000mr Q=0 10007 Q-

Figure 4: Plot of the CTFT of a continuous-time signal z(t).

The signal g, (t) being input to the DSP system in Fig. 3 is defined as

ga(t) = x(t) cos(20007t) cos(30007t).

Further, define 7 = 5355 seconds and T3 = g5 seconds. Finally, suppose the anti-aliasing filter in Fig. 3 has

the following frequency response:

e—7102 12| < 6000,
0, otherwise.

Haa(j62) = {

(a) Provide a labeled plot of the CTFT of g, (¢).

(b) Provide a closed-form expression for ¢,,(t) as a function of x(t). Justify your answer.



